氧化石墨烯/還原氧化石墨烯在光電傳感領(lǐng)域的應(yīng)用,其基本依據(jù)是本章前面部分所涉及到的各種光學(xué)性質(zhì)。氧化石墨烯因含氧官能團(tuán)的存在具備了豐富的光學(xué)特性,在還原為還原氧化石墨烯的過(guò)程中,不同的還原程度又具備了不同的性質(zhì),從結(jié)構(gòu)方面而言,是其SP2碳域與SP3碳域相互分割、相互影響、相互轉(zhuǎn)化帶來(lái)了如此豐富的特性。也正是這些官能團(tuán)的存在,使得氧化石墨烯可以方便的采用各種基于溶液的方法適應(yīng)多種場(chǎng)合的需要,克服了CVD和機(jī)械剝離石墨烯在轉(zhuǎn)移和大面積應(yīng)用時(shí)存在的缺點(diǎn),也正是這些官能團(tuán)的存在,使其便于實(shí)現(xiàn)功能化修飾,為其在不同場(chǎng)景的應(yīng)用提供了一個(gè)廣闊的平臺(tái)。氧化石墨烯表面的-OH和-COOH等官能團(tuán)含有孤對(duì)電子。進(jìn)口氧化石墨生產(chǎn)
GO作為一種新型的藥物載體材料,以其良好的生物相容性、較高的載藥率、靶向給藥等方面得到廣泛的關(guān)注。GO作為遞送藥物的載體,它不僅可以負(fù)載小分子藥物,也可以與抗體、DNA、蛋白質(zhì)等大分子結(jié)合,如圖7.2所示。普通的有機(jī)藥物很多都含有π結(jié)構(gòu),而這些藥物的水溶性都非常差,而GO具有較好的親水性,因此可以借助分散性較好的GO基材料來(lái)解決這個(gè)問(wèn)題,即將上述藥物負(fù)載到GO基材料上,形成GO-藥物混合物材料。這對(duì)改善難溶***物的水溶性,降低藥物不良反應(yīng)以及提高藥物穩(wěn)定性和生物利用度等方面有非常重要的研究意義。關(guān)于氧化石墨導(dǎo)熱氧化石墨正式名稱為石墨氧化物或被稱為石墨酸,是一種由物質(zhì)量之比不定的碳、氫、氧元素構(gòu)成的化合物。
在GO還原成RGO的過(guò)程中,材料的導(dǎo)電性、禁帶特性和折射率都會(huì)發(fā)生連續(xù)變化,形成獨(dú)特而優(yōu)異的可調(diào)諧型新材料。2014年,澳大利亞微光子學(xué)中心賈寶華教授領(lǐng)導(dǎo)的科研小組***發(fā)現(xiàn)在用激光直寫氧化石墨烯薄膜形成微納米結(jié)構(gòu)的過(guò)程中,材料的非線性可以實(shí)現(xiàn)激光功率可控的動(dòng)態(tài)調(diào)諧。與傳統(tǒng)的非線性材料相比,氧化石墨烯的三階非線性高出了整整1000倍,隨著氧化石墨烯中的氧成分逐漸減少,而非線性也呈現(xiàn)出被動(dòng)態(tài)調(diào)諧的豐富變化。不但材料的非線性系數(shù)的大小產(chǎn)生改變,其非線性吸收和折射率也發(fā)生變化,并且,這種豐富的非線性特性完全可以實(shí)現(xiàn)動(dòng)態(tài)操控。
氧化石墨烯(GO)的光學(xué)性質(zhì)與石墨烯有著很大差別。石墨烯是零帶隙半導(dǎo)體,在可見光范圍內(nèi)的光吸收系數(shù)近乎常數(shù)(~2.3%);相比之下,氧化石墨烯的光吸收系數(shù)要小一個(gè)數(shù)量級(jí)(~0.3%)[9][10]。而且,氧化石墨烯的光吸收系數(shù)是波長(zhǎng)的函數(shù),其吸收曲線峰值在可見光與紫外光交界附近,隨著波長(zhǎng)向近紅外一端移動(dòng),吸收系數(shù)逐漸下降。對(duì)紫外光的吸收(200-320nm)會(huì)表現(xiàn)出明顯的π-π*和n-π*躍遷,而且其強(qiáng)度會(huì)隨著含氧基團(tuán)的出現(xiàn)而增加[11]。氧化石墨烯(GO)的光響應(yīng)對(duì)其含氧基團(tuán)的數(shù)量十分敏感[12]。隨著含氧基團(tuán)的去除,氧化石墨烯(GO)在可見光波段的的光吸收率迅速上升,**終達(dá)到2.3%這一石墨烯吸收率的上限。調(diào)控反應(yīng)過(guò)程中氧化條件,減少面內(nèi)大面積反應(yīng),減少缺陷,提升還原效率。
氧化石墨烯(GO)的比表面積很大,而厚度只有幾納米,具有兩親性,表面的各種官能團(tuán)使其可與生物分子直接相互作用,易于化學(xué)修飾,同時(shí)具有良好的生物相容性,超薄的GO納米片很容易組裝成紙片或直接在基材上進(jìn)行加工。另外,GO具有獨(dú)特的電子結(jié)構(gòu)性能,可以通過(guò)熒光能量共振轉(zhuǎn)移和非輻射偶極-偶極相互作用能有效猝滅熒光體(染料分子、量子點(diǎn)及上轉(zhuǎn)換納米材料)的熒光。這些特點(diǎn)都使GO成為制作傳感器極好的基本材料[74-76]。Arben的研究中發(fā)現(xiàn),將CdSe/ZnS量子點(diǎn)作為熒光供體,石墨、碳纖維、碳納米管和GO作為熒光受體,以上幾種碳材料對(duì)CdSe/ZnS量子點(diǎn)的熒光淬滅效率分別為66±17%、74±7%、71±1%和97±1%,因此與其他碳材料相比,GO具有更好的熒光猝滅效果[77]。氧化石墨烯(GO)的比表面積很大,厚度小。制備氧化石墨商家
GO的摻量對(duì)于水泥復(fù)合材料的提升效果也有差異。進(jìn)口氧化石墨生產(chǎn)
光學(xué)材料的某些非線性性質(zhì)是實(shí)現(xiàn)高性能集成光子器件的關(guān)鍵。光子芯片的許多重要功能,如全光開關(guān),信號(hào)再生,超快通信都離不開它。找尋一種具有超高三階非線性,并且易于加工各種功能性微納結(jié)構(gòu)的材料是眾多的光學(xué)科研工作者的夢(mèng)想,也是成功研制超高性能全光芯片的必由之路。超快泵浦探針光譜表明,重度功能化的具有較大SP3區(qū)域的GO材料在高激發(fā)強(qiáng)度下可以出現(xiàn)飽和吸收、雙光子吸收和多光子吸收[6][50][51][52],這種效應(yīng)歸因于在SP3結(jié)構(gòu)域的光子中存在較大的帶隙。相反,在具有較小帶隙的SP2域中的*出現(xiàn)單光子吸收。石墨烯在飛秒脈沖激發(fā)下具有飽和吸收[52],而氧化石墨烯在低能量下為飽和吸收,高能量下則具有反飽和吸收[51]。因此,通過(guò)控制GO氧化/還原的程度,實(shí)現(xiàn)SP2域到SP3域的比例調(diào)控,可以調(diào)整GO的非線性光學(xué)性質(zhì),這對(duì)于高次諧波的產(chǎn)生與應(yīng)用是非常重要的。進(jìn)口氧化石墨生產(chǎn)